

A Study on Mobility in VDL Modes 2 and 3

Robert Murawski Steven Bretmersky Vijay K. Konangi

Department of Electrical and Computer Engineering
Cleveland State University
Cleveland, Ohio

Study Overview

- Examine the handoff mechanisms of VDL Modes 2 and 3
- Determine the handoff delays of each of the two modes through simulation
 - Handoff delay is defined as the amount of time during which the data link is unavailable during the handoff procedure
- This study does not examine mobility mechanisms at the higher layers

VDL Modes 2 and 3

- Mode 2
 - Carrier-Sense Multiple Access (CSMA)
 - No priority support
- Mode 3
 - Time-Division Multiple Access
 - Offers several 3 and 4 slot configurations
 - 120 ms frame length
 - Supports voice for ATC
 - Supports priority
- Both modes operate at 31.5 kbps

Mode 2 Handoffs

Five types of handoff are specified for Mode 2:

- Aircraft-Initiated
 - Used in light to moderately loaded subnetworks
 - The aircraft decides when to handoff based on signal quality or on link failure
- Aircraft-Requested Ground-Initiated
 - Used in moderately to heavily loaded subnetworks
 - The aircraft decides when to handoff based on signal quality
 - Allows the ground network to decide the next ground station for load balancing

Mode 2 Handoffs (continued)

Ground-Initiated

- Used in heavily loaded subnetworks
- The ground determines when to handoff and selects the next ground station for load balancing
- Handoff must be to another ground station on the same frequency

Ground-Requested Aircraft-Initiated

- The ground determines when to handoff and selects the next ground station for load balancing
- Similar to the Ground-Initiated handoff, but allows the aircraft to handoff to a ground station on a different frequency

Broadcast

Allows the ground to initiate handoffs to multiple aircraft

Mode 2 Handoff Scenario

- A Mode 2 handoff occurs based on signal quality and ground station load
- A handoff is possible to any ground station in the area with good signal quality

Example Mode 2 Handoff

Ground-Requested Aircraft-Initiated Handoff

Mode 3 Handoffs

Ground-Initiated

 The ground informs the aircraft of the next frequency and group that should be tuned

Aircraft-Initiated

- Used when manually retuning the radio
- Used by 3T configuration with auto-tune

Mode 3 Handoff Scenario

- A Mode 3 handoff occurs due to a sector transition
- A handoff is possible only to a specific ground station that provides service to the next sector

Example Mode 3 Handoff

Ground-Initiated Handoff

Simulation Scenario

- Models the Cleveland ARTCC
 - 48 en route sectors
 - 15 TRACONs
- Includes 218 flights over a 1 hour period
 - Flight trajectories are based on actual flight data

Simulation Scenario (2)

- 32 VDL ground stations included at 15 sites to provide coverage
 - Each ground station provides communications for 2 sectors
 - Sites are located at the TRACONs.
- Each ground station belongs to a separate ground system
 - Excludes "soft handoffs" from this study

Simulation Scenario (3)

- All handoffs occur at sector boundaries
- Mode 3 operates in the 2V2D operation
- Basic services operate over the link to provide traffic
 - Includes CPDLC, DSSDL, AOCDL, and AUTOMET traffic

Mode 3 2V2D Operation

- The Mode 3 2V2D configuration provides 2 logical channels, or groups, in a 25 kHz VHF frequency
- Each group operates independently, with dedicated voice and data slots in the TDMA frame
- A single sector is assigned to a VDL Mode 3 group

Aircraft Traffic Load

- The flight traffic varies from sector to sector
 - The data traffic load is not distributed evenly amongst ground stations
- The busiest sectors:
 - Detroit TRACON, 38 total aircraft, up to 13 at a time
 - Sector 21, 34 total aircraft, up to 13 at a time
 - Sector 20, 26 total aircraft, up to 9 at a time

Simulation Results

- The channels were lightly loaded
- Mode 3 has approximately half the load per channel as Mode 2 since it has 2 logical channels per frequency
- Mode 2 handoff delays are much shorter than those of Mode 3
 - This is expected due to the multiple MAC frames required to perform the handoff

	Mode 2	Mode 3
Number of Handoffs	325	319
Load per Channel	246 bps	129 bps
Mean HO Delay	0.20 s	2.23 s
95 th Percentile HO Delay	0.47 s	3.21 s
99.9th Percentile HO Delay	0.82 s	4.66 s

The End

Any Questions?

